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Abstract: Multi-source data remote sensing provides innovative technical support for tree species
recognition. Tree species recognition is relatively poor despite noteworthy advancements in image
fusion methods because the features from multi-source data for each pixel in the same region cannot
be deeply exploited. In the present paper, a novel deep learning approach for hyperspectral imagery
is proposed to improve accuracy for the classification of tree species. The proposed method, named
the double branch multi-source fusion (DBMF) method, could more deeply determine the relationship
between multi-source data and provide more effective information. The DBMF method does this by
fusing spectral features extracted from a hyperspectral image (HSI) captured by the HJ-1A satellite
and spatial features extracted from a multispectral image (MSI) captured by the Sentinel-2 satellite.
The network has two branches in the spatial branch to avoid the risk of information loss, of which,
sandglass blocks are embedded into a convolutional neural network (CNN) to extract the correspond-
ing spatial neighborhood features from the MSI. Simultaneously, to make the useful spectral feature
transfer more effective in the spectral branch, we employed bidirectional long short-term memory
(Bi-LSTM) with a triple attention mechanism to extract the spectral features of each pixel in the HSI
with low resolution. The feature information is fused to classify the tree species after the addition of a
fusion activation function, which could allow the network to obtain more interactive information.
Finally, the fusion strategy allows for the prediction of the full classification map of three study areas.
Experimental results on a multi-source dataset show that DBMF has a significant advantage over
other state-of-the-art frameworks.

Keywords: tree species classification; deep learning fusion method; multi-source images classification

1. Introduction
1.1. Background and Problem

Tree species information is being given an increasing amount of attention as a core
indicator in forest resource surveys, as the accurate assessment of the composition of tree
species in the forest environment will be an asset for forest ecologists, land managers,
and commercial harvesters. It can also be used to study biodiversity patterns, estimate
timber stocks, or improve the understanding of forest fire risk [1]. Accurate tree species
distribution information is crucial for effective forest resource protection efforts. However,
the wide range and large area distribution of forests make it excessively time-consuming
and labor-intensive to manually identify the tree species they contain. As such, it is difficult
to satisfy the requirements for real-time forest monitoring and protection. There is a
demand for an effective classification framework to recognize the distribution information
of large-area tree species [2]. Remote sensing provides detailed, spectrally rich, continuous
spatial, and multi-temporal information, allowing tree species to be identified on the basis
of their spectral and structural characteristics. Although satellite remote sensing sensor
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technology is rapidly changing, the high-resolution information of forests requires new
classification algorithms to bridge the gap between their needs and the wealth of data
information. As such, the present study aimed to improve existing automatic tree species
classification techniques [3].

In oversized and hard-to-access areas, remote sensing has been utilized to resolve the
deficiencies of traditional field investigation [4]. Within the past four decades, advances
in remote sensing technology have made it possible to classify tree species using several
image types [5]. Certain remote sensing images limit the ability to recognize tree species
due to their relatively low spatial resolution (LR), even when they contain large amounts
of information, such as for Sentinel or Landsat data [6]. LiDAR data can provide many
structural features of trees [7]. A hyperspectral image (his) is composed of many continuous
narrow bands that reveal the spectral details of different tree species [8]. However, as most
trees are mixed and marshy plants, it is hard to recognize species in HSIs due to their
LR [9]. Conversely, multispectral images (MSIs) provide abundant spatial and contextural
information because of their high spatial resolution (HR) [10]. Multispectral images are
the most common images used in forest areas [11,12]. Remote sensing images such as
LANDSAT MSS, Landsat TM, Spot, and Sentinel-2 have been used for wetland monitoring,
land cover mapping, and tree species identification [13–15]. The fusion of MSI ahisHSI
information can integrate a variety of relevant features to improve the accuracy of tree
species classification. A wide variety of features are reflected in the differences hisng HSI
and MSI spectral characteristics [16]. The high spectral resolution and subtle divergence
of HSIs are advantageous in tree species identification [17,18]. A single source of spectral
information has certain disadvantages that may prevent the accurate classification of tree
species in complex areas. Hyperspectral and MS data fusion technology can improve
recognition rates. Classification accuracy can also be further improved by the deep learning
(DL) of fused spectral and spatial information [19].

1.2. Deep Learning Algorithm

Deep learning is a research subfield in machine learning that aims to build abstract
hierarchical models within datasets, employing an incremental approach. Inspired by the
deep structure function of the human brain, DL algorithms activate the effective information
by many layers of nonlinear transformation operations to compose a learning model to
build a mapping relationship between input data and output data [20]. Recently, the
DL method has exhibited success for tree species detection [21], crop classification [22],
and HSI classification [23]. Deep learning has demonstrated superior results over other
commonly used classifiers for trees recognition [24,25]. Franklin et al. [11] classified four
tree species by employing random forest (RF) classifier with MSI data captured by a rotating
sensor on an unmanned aerial vehicle (UAV) in a broadleaf forest, and the overall accuracy
(OA) of classification results reached 78%. Pölönen et al. [26] applied a three-dimensional
convolutional neural network (3D-CNN) to recognize three main tree species with HS
data from a boreal forest in Finland, and the OA reached 0.96 on the validation dataset by
applying the proposed CNN model. Contextual interactions were obtained by exploiting
the local spatial–spectral relationship of adjacent pixel vectors in a square window in the
contextual deep CNN (CD-CNN) [27]. Xu [28] proposed the long short-term memory
(LSTM) model based on frequency band grouping and a multi-scale CNN as spectral
and spatial feature extractors, respectively. The dual CNN branch structure proposed by
Yang [29] can be used to extract spectral features from low-resolution HSIs and spatial
neighborhood feature information from high-resolution MSIs.

There is an abundance of remote sensing data available concerning the classification
of tree species, but they have not been deeply mined for potential information [30]. Liu
and Wang [31] identified the tree species and estimated stock volume with the VGG16 and
UNET model. Because there is no better classification strategy to solve the problem of the
accurate classification of regional tree species, it is not yet possible to further improve the
fusion classification strategy. In recent years, Sentinel-2 satellite MS data have been applied
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in tree species classification technologies because of their low cost and HR [6]. With the DL
method, it is possible to improve the existing classification strategy by combining the data of
two satellites and extracting feature information for tree species recognition [25]. Although
existing tree species classification network designs are relatively sophisticated, they are
rarely used with multi-source networks due to their complexity or relatively low accuracy.
Firstly, these DL networks can capture finer features, although the training work will be
more difficult and very time-consuming and resource-intensive. Secondly, the remaining
representation is compressed and connecting identity mappings between thin bottlenecks
will inevitably lead to information loss. In addition, due to feature dimensionality reduction,
gradient confusion also weakens the ability of gradients to propagate between layers,
affecting the training convergence and model performance. Only efficient feature selection
and deeper depth mining can eliminate the redundancy to retain the depth features and
ensure that the tree species are correctly classified. When the spatial and spectral block
are adjusted, this type of classic DL structure can be applied with multi-source networks,
yielding state-of-the-art results. Thus, designing more efficient network architectures is
essential for yielding efficient models [32].

1.3. Research Objectives

This study aimed to improve the network identification ability for challenging tree
species classification tasks by proposing a network for tree species classification wherein
CNN and LSTM are fused with multi-source data based on HJ-1A and Sentinel-2 remote
sensing images. Sentinel-2 data are used as an MSI, which has HR, and HJ-1A data are used
as an HSI, which has LR. To exploit the correlation between the HSI and MSI, we used the
spectrum of LR HSI and the corresponding spatial neighborhoods in HR MSI as the input
pairs of the network. Features were extracted from the corresponding neighborhoods in the
LR HSI and the MSI with two CNN branches. Then, these branches were connected and
fed to the fusion activation layer. The final fusion layer output the spectrum classification
map.

The main objectives of this work can be summarized as follows:

(1) To design a framework for tree species classification with multi-source data and a DL
algorithm.

(2) To assess the performance of the proposed method for tree species classification using
HSI data and MSI data.

(3) To analyze the advantages of the proposed model with other models to provide new
ideas for the application of the DL method in forestry.

2. Materials and Methods
2.1. Study Area

The experiment was conducted in the Tahe Forestry Bureau (123◦ to 125◦ E and 52◦ to
53◦ N) located in the center of Daxing’an Mountains, northwest of Chinese Heilongjiang
Province, with a border line of 173 km and a total area of 14,420 km2 (Figure 1). The
climate is a cold–temperate continental climate and experiences severe climatic changes,
with long dry and cold winters and short hot and humid summers; the annual average
temperature is −2.4 ◦C, and the annual average precipitation is 463.2 mm, which mainly
occurs in July and August. The forest covers 81% of the total area, with a storage capacity
of 53.4 million m3. Dominant tree species include birch, larch, spruce, mongolica pine
(shortened as mongolica), willow, and poplar [33].
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Figure 1. Map of the study area.

2.2. Data

Data captured by HJ-1A and Sentinel-2 were used for tree species classification. The
HSI data of HJ-1A and the MSI data of Sentinel-2A were obtained from the official websites
of the China Center for Resources Satellite Data and Application and the United States
Geological Survey (USGS), respectively, which is presented in Figure 1.

The HJ-1A satellite was equipped with an HS imaging instrument with 115 bands.
The images have a 100 m spatial resolution. The Sentinel-2A data has 13 spectral bands [34].
It provides abundant data information for the field of land and coastal remote sensing [35].
To supply the gap of the relatively LR of the HSI, we used the bilinear interpolation
method to improve the resolution of the HJ-1A/HSI image (both datasets were taken
on 20 August 2016) using ENVI 5.1 software to increase the spatial resolution of the HJ-
1A/HSI image to 10 m. The experimental HSI data were resampled by the interpolation
algorithm so that it had the same 10 × 10 m2 spatial resolution as the MSI on the same
ground. The classification of dominant forest species was performed in the study area from
second-class data surveyed by the Tahe Forestry Bureau in 2018.

Because of the large area of the forest, the authors attempted to select the area
with the most species as the research object, and the size of the three study areas was
500 × 500 × 115 pixels and 500 × 500 × 13 pixels for the HSI and MSI data, respectively.
The dominant tree species were birch, larch, spruce, mongolica, willow, and poplar. Table 1
lists the tree species of the present article’s three study areas, where the training samples
approximately accounted for a third of the total samples.
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Table 1. List of 6 tree species samples of the three study areas.

Birch Larch Mongolica Poplar Spruce Willow

First area 130,124 39,216 57,620 3019 15,330 3492

Second area 150,771 58,829 11,412 2175 17,048 1067

Third area 99,082 82,746 38,114 1013 13,460 15,486

2.3. Classification Models
2.3.1. Bi-LSTM

Long short-term memory is a form of recurrent neural network (RNN) [36], which
learns long-term dependency information via feedback connections. To acquire short-term
memory and abandon long-term memory, the model captures time-series information and
sequence data by cyclic connections on their hidden layers. Recurrent neural networks
have gradient vanishing characteristics that destabilize the long-term dependency of the
model’s learning process. However, LSTM resolves this problem by making the hiding
layer store the latest information rather than the previous information.

Long short-term memory is operated as follows:

ft = σ
(

Wh f ·ht−1 + Wx f ·xt + b f

)
, (1)

it = σ(Whi·ht−1 + Wxi·xt + bi), (2)

C̃t = tanh(WhC·ht−1 + WxC·xt + bC), (3)

Ct = ft·Ct−1 + it·C̃t, (4)

Ot = σ(Who·ht−1 + Wxo·xt + bo), (5)

ht = Ot·tanh(Ct). (6)

Long short-term memory is composed of four parts: a forget gate ft, input gate it,
output gate Ot, and candidate cell value C̃t. Here, xt is the input; Ot is the output; and
b f , bi, bC, and bo are bias terms. Furthermore, σ denotes the activation function, ‘·’ denotes
the matrix multiplication operator, and W×× denotes the weight matrix.

According to LSTM, bidirectional LSTM (Bi-LSTM) integrates the input sequence
information in both direct and inverted directions. The output at time t includes the
forward LSTM output and reverse LSTM output [37].

→
ht = ∅

(
Wd

hh·ht−1 + Wd
xh·xt + bd

h

)
, (7)

←
ht = ∅

(
Wi

hh·ht−1 + Wi
xh·xt + bi

h

)
, (8)

where
→
ht,
←
ht denote the hidden layer in forward and reverse LSTM directions at time t,

respectively. The hidden state ht is obtained by concatenating
→
ht and

←
ht, which is then fed

to the output layer. The output Ot is calculated as follows:

Ot = Whp·ht + bp, (9)

where Whp denotes the weight parameter and bp denotes the bias parameter.

2.3.2. Triple-Attention Mechanism

The attention mechanism assigns weighted values so that the spectrum with greater
weight is prioritized in the module. The attention module mainly refines the weights of
mapped features. Meaningful bands are given more attention by each spectral data point
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in the feature map, which is effectively a feature detector. The meaningless bands are
weakened.

The triple-attention mechanism is composed of three attention modules: a traditional
attention mechanism, average pooling attention mechanism, and max-pooling attention
mechanism. The average pooling function is used by the second of these to retain local
characteristics, and, similarly, the max-pooling function is used by the last of them to
retain local characteristics [38]. The three triple-attention mechanism formula models are
as follows:

t =
n

∑
j=1

exp
(
eij
)

∑n
m=1 exp(eim)

hij, (10)

a = AveragePooling

{
n

∑
j=1

exp
(
eij
)

∑n
m=1 exp(eim)

hij

}
, (11)

m = MaxPooling

{
n

∑
j=1

exp
(
eij
)

∑n
m=1 exp(eim)

hij

}
. (12)

Multiple weights are assigned to the original features of HS data so that each feature
is recognized to the greatest extent possible. Redundant features are removed before the
subsequent classification experiment. The triple-attention mechanism formula is calculated
as follows:

F(t,a,m) = concatencate(t⊕ a⊕m). (13)

The triple-attention mechanism formula provides the new weight, which is assigned
to the corresponding features, where t denotes the traditional attention mechanism value, a
denotes the average pooling attention mechanism value, m denotes the maximum pooling
attention mechanism value, and F(t,a,m) denotes the concatenated features of the three
equations. Finally, ‘⊕’ denotes the operation of the feature fusion algorithm. The fusion
information concatenated with the output of the triple-attention mechanism provides rich,
detailed features for subsequent classification work.

2.3.3. Sandglass Block

The purpose of the sandglass block is to minimize parameters and computational
cost by flipping the inverted residuals. The sandglass block uses the thickness of each
block to represent the corresponding relative number of channels, which is presented in
Figure 2. The residual block reverses building shortcuts between bottlenecks and includes
a depth-wise convolution (detached blocks) at both ends of the residual path [32].

To preserve information from the bottom layers when transiting to the top layers
and to facilitate gradient propagation across layers, we positioned shortcuts to connect
high-dimensional representations. Because deep-wise convolution is relatively lightweight,
higher-dimensional features can be applied to encode richer spatial information and gener-
ate more expressive representations.

Let I ∈ TD f×D f×M be the input tensor and O ∈ TD f×D f×M be the output tensor of a
building block. The formulation of the proposed building block, without considering the
depth-wise convolution or activation layers, is as follows:

O = ∅e(∅r(I)) + I, (14)

where ∅e denotes the two pointwise convolutions for channel expansion, and ∅r denotes
the channel reduction. This mechanism creates a bottleneck in the middle of the residual
path to save parameters and computation costs. The shortcut can be applied to connect rep-
resentations with many channels instead of bottlenecks. The shortcut delivers information
from the input I to the output O so that many gradients propagate across multiple layers.
Depth-wise spatial convolutions are adopted to encode spatial information from the end
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of the residual path to learn expressive spatial contextual information. The block can be
formulated as follows:

ô1 = ∅1,p∅1,d(I), (15)

ô2 = ∅2,p∅2,d(ô1) + ô1, (16)

ôi = ∅i,p∅i,d(ôi−1) + ôi−1, (17)

where ∅i,p and ∅i,d are the i-th point-wise convolutions and depth-wise convolutions,
respectively. Both convolutions are conducted into high-dimensional spaces to extract rich
features.
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expressive spatial information.

2.3.4. Double Branch Multi-Source Fusion Network

Meaningful features are extracted by double branch multi-source fusion (DBMF) from
the HSI bands that are exploited via the interpolation algorithm concerning MSI at the
same pixel. The expected features of the HSI are extracted so that all the HSI bands can
jointly reconstruct the feature map, which minimizes spectral distortion. Compared with
other networks, DBMF has lower complexity because it requires less computation.

The proposed DBMF method is illustrated in Figure 3. The spectral information of
a pixel is determined by its average reflectance spectrum, while the spatial features are
associated with the surrounding pixels. In this framework, the spectral branch extracts
spectral features as the spatial branch extracts spatial features; they are then fused for
subsequent operations. To minimize the complexity of tree categories and maintain sample
imbalance, we fused two single-source datasets by the framework of spatial and spectral
branches to complete the classification process.

The HJ-1A HSI data are input to the HS branch, which is resampled by the bilinear
interpolation algorithm to make its spatial resolution the same as that of the MSI captured
by Sentinel-2. The HS input is composed of different spectral sizes of the HSI paths to fully
exploit the structural information of the images. The Bi-LSTM first extracts the HSI data
characteristics, then assigns multiple weights to each spectral feature through the triple-
attention mechanism. Dense networks then perform residual calculations for numerous
shallow features to generate representative residual features.

The spectral branch implementation is described in Table 1. The kernel size of the
bidirectional layer is (1 × 1 × 7). Feature maps in the shape of (7 × 7 × 47, 24) are obtained,
then permuted to the triple-attention block to make a size of (7× 7× 47, 24). A feature map
in the shape of (7 × 7 × 1, 60) is then obtained, and the BN-Mish-Conv block calculates a
(1 × 1 × 47) kernel. The BN-Lfu-Conv block consists of a batch normalization (BN) layer
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and an active function with an Lfu unit (inspired by Mish [39]), as well as an individual
convolution layer.

The MSI data captured by the MS Sentinel-2 satellite are input into the MS branch.
The MSI has a much higher spatial resolution than the HSI, and therefore they are subject
to very different spatial scales. Each convolutional layer is followed by a BN-Mish-Conv
block. The sandglass block is applied to eliminate redundant spatial features, the output
of which is a combination of deep and shallow learning CNNs that mine and merge deep
spatial characteristics.
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Figure 3. Architecture of the proposed DBMF method.

The red dotted branch of the network employs the expected bands grouped by Bi-
LSTM and the triple-attention model to extract spectral characteristics. The green dotted
branch of the network employs the convolution and sandglass block to extract spatial
characteristics. In the right architecture, the spectral information and spatial information
are combined to form a new layer for spectral-spatial classification. The details of the
spatial branch are similar with the spectral branch, which is shown in Table 1. The layer is
a basic structure composed of a BN and Mish activation function plus a 3D-CNN with a
kernel size of (3 × 3 × 1) and 24 channels. A sandglass block is applied to the network to
change the feature map shape into (7 × 7 × 1, 24). These two steps are repeated to finally
bring a spatial shape of (1 × 60) to the next fusion layer.

The spectral and spatial feature maps are obtained by spectral and spatial branches,
respectively. The two features are fused together for subsequent operations to account for
relevant domains that do not contain the two features. Finally, the full classification result is
obtained with the BN-Lfu-Conv block and BN-Drop-Pool-Lfu block calculated in sequence.

In DBMF, concatenation is applied as the activation function. An appropriate activation
function can accelerate the counter-propagation and convergence of the network. The
complete loss function of the proposed DBMF model is shown to be the following:

L = αLHS + βLMS + γL f usion, (18)

L f usion = − 1
n

n

∑
i=1

[
yi log

(
ŷ f usion,i

)
+ (1− yi) log

(
1− ŷ f usion,i

)]
, (19)

LHS = − 1
n

n

∑
i=1

[yi log(ŷHS,i) + (1− yi) log(1− ŷHS,i)], (20)
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LMS = − 1
n

n

∑
i=1

[yi log(ŷMS,i) + (1− yi) log(1− ŷMS,i)], (21)

where L f usion is the main loss function; LHS and LMS are the two auxiliary loss functions;
ŷHS, ŷMS, and ŷ f usion are the corresponding predicted labels for the i-th training sample;
and α, β, and γ are the scalar weights. For convenience, the scalar weights were fixed to
1 in the experiments of the present study. Furthermore, yi is the true label and n is the
size of the training set [40]. The model is trained and optimized employing end–end and
stochastic gradient descent algorithm, respectively.

2.3.5. Evaluation Indicators

To test the tree species classification accuracy of the proposed method, we used 70%
of field samples of the test as validation samples, independent of the training samples.
The OA, average accuracy (AA), and Kappa coefficient (kappa) were determined using
Equations (22)–(24), respectively.

OA =
∑k

i=1 C(i, i)
M

, (22)

AA =
∑k

i=1 OA
K

, (23)

kappa =
M ∑k

i=1 C(i, i)−∑k
i=1(C(i,+)C(+, i))

M2 −∑k
i=1(C(i,+)C(+, i))

, (24)

where OA represents the proportion of correctly classified samples in the whole test sample,
AA denotes the average accuracy of every tree species, and kappa is a statistical measure
that reflects the consistency between the ground truth and classified ground maps. For
comparison, 30% of the sample was randomly assigned to the training group with the
remaining data assigned to the test group.

3. Results

The proposed method for tree species data classification was compared with the
traditional classifier support vector machines (SVM) [41], as well as recently developed
CNN-type methods, CD-CNN [27], double-branch multi-attention mechanism network
(DBMA) [42], and double-branch dual-attention mechanism network (DBDA) [43]. Because
SVM does not belong to DL, only the other four algorithms were learned in the training
process. All the methods were tested on a single HSI, single MSI, and fused HSI and MSI
with data resolution upscaled to the same pixel level. The development environment of
the algorithms is listed as follows: (1) Windows 10, (2) Xeon (R) CPU 2.30 GHz processor,
(3) 32 GB RAM, (4) NVIDIA Tesla P100 GPU, (5) Python 3.7, and (6) Tensorflow Keras
framework. The first subsection demonstrates the training process of the DBMF model.

3.1. Parameter Adjustment

Parameter setting and adjustment are important parts of the DBMF test because they
reflect network performance. To ensure fairness in the experimental results, the multi-data
fixed resolution was given the same ground truth map, although the two types of data had
different resolutions. Table 2 describes each layer of the DBMF method. In the experiment,
the proposed method and the other methods operated for comparison were based on the
same ground truth map.
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Table 2. DBMF architecture.

HSI Tunnel MSI Tunnel

Layer Kernel Size Output
Shape Layer Kernel Size Output

Shape

Input (7 × 7 × 100) Input (7 × 7 × 100)

Bidirectional (1 × 1 × 7) (7 × 7 × 47,
24)

BN-Lfu-
Conv (3 × 3 × 1) (7 × 7 × 1,

24)

Permute (7 × 7 × 47,
24) Concatenate (7 × 7 × 1,

24)

Triple-
Attention

(7 × 7 × 47,
24)

Sandglass
Block

(7 × 7 × 1,
24)

BN-Lfu-
Conv (1 × 1 × 47) (7 × 7 × 1,

60)
BN-Lfu-

Conv (3 × 3 × 1) (7 × 7 × 1,
24)

Pooling (7 × 7 × 1) (1 × 1 × 1,
60) Concatenate (7 × 7 × 1,

24)

Concatenate (1 × 60) Sandglass
Block

(7 × 7 × 1,
24)

Concatenate (1 × 60)

Layers (Fusion) Output Shape (Fusion)

JOINT (1 × 60)

BN-MISH-Conv (7 × 7 × 1, 60)

BN-Dropout-Pooling-Lfu (1 × 60)

Training the DBMF model takes a long amount of time due to its complex branch
structure and numerous parameters, and therefore it was repeatedly tested. The input
kernels were calculated and characterized by OA and AA. The network model obtained the
best performance with the input kernel of (7 × 7), the details of which will be described in
the next section. The Adam strategy was also used in the network with a learning rate set
to 0.01 as per the desired training performance and convergence speed of the network [44].

3.2. Training DBMF

During the training of the CNN model, the size of the convolution kernel has a
great impact on classification accuracy [45]. If the convolution kernel is set to be larger,
the detailed information will be lost, but the associated data will be retained. On the
contrary, if the size is set to be smaller, the result is just the opposite. Therefore, the size
of the convolution kernel directly affects the results of tree species classification. In this
experiment, the most common sizes of convolution kernels are used with n, n = 1, 3, 5, 7, 9,
11, and 13. The model was trained with a batch size of 100 samples during 1000 epochs, and
the result of which is presented in Figure 4. From Figure 5, it can be seen that the size 7 had
the highest accuracy rate. Size 9 converged rapidly in the early stage, which almost reached
the peak in 800 cycles, but the accuracy rate did not rise from then on, and therefore the
learning ability was limited. However, from the subfigure of the size 7 learning curve, the
accuracy still improved in the stage of 800 epochs, the gradient of which did not completely
disappear. Although size 1 and size 3 were stable, the accuracy rate was unable to satisfy
the given request. The curves of size 11 and size 13 fluctuated considerably, which were
not suitable for mass machine learning operations.
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The size of the parameter file of the DBMF with all layers was 303 megabytes. The
stochastic gradient descent method was also used for training. Figure 5 shows the training
time consumed by the tested models, where DBMF took approximately 100 min, which
was considerably faster (30 min) than CD-CNN, whose learning speed was the fastest in
other compared methods, while SVM took the longest time. It is shown that DBMF was the
fastest learning model compared with the others, and the DL capability was better than
traditional machine learning in tree species classification.

Figure 6d shows the changes in accuracy and loss rate in the training process of the
model. Increasing the number of iterations changed the whole network model so the
complete training process can be observed in time and avoid overfitting. As the number of
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iterations slowly increased, the accuracy also gradually increased. When the epoch number
approached 400, the accuracy tended to be stable. Similarly, as the number of iterations
increased, the loss value gradually decreased. When the number of cycles reached about
300, the loss rate tended to be stable, but when it exceeded 400, the loss value began to
rise and overfitting occurred. The 400 iterations of the model had the lowest accuracy and
stability loss.
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Since this paper used the stochastic gradient descent method to pre-train the DBMF
model, it can be seen from Figure 6a–c that the training accuracy of these three algorithms
for the datasets was general, but the loss rate was still relatively low. After 100 iterations
of training, the function curve did not converge, but, rather, it diverged. Therefore, these
three methods were not suitable for the presented datasets.

Figure 7 shows that OA changed slowly with the slow increase of the number of
samples. They all had one point in common: the more training samples, the higher the
accuracy. However, in each stage, the method proposed in this paper was better than the
other tested methods, which showed its strong ability to learn spatial and spectral features.
The OA of the proposed model reached the peak of 92% when the proportion of training
samples accounted for 80%, and then tended to be stable. The accuracy of other algorithms
was also stable, but the accuracy was lower than the proposed DBMF method.
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3.3. Detailed Results of State-of-the-Art Networks

All methods were tested five times, and the results were averaged from the three study
areas, of which, the OA, AA, and kappa detailed statistics are listed in Table 3.

Table 3. Classification accuracy (%) comparison of three areas.

NO.
SVM CD-CNN DBMA DBDA DBMF

HJ1 Sen2 HJ +
Sen2 HJ1 Sen2 HJ +

Sen2 HJ1 Sen2 HJ +
Sen2 HJ1 Sen2 HJ +

Sen2 HJ1 Sen2 HJ +
Sen2

OA 40.67 36.31 42.60 47.64 44.35 48.66 62.13 60.43 63.05 81.67 81.57 82.12 84.32 82.62 90.84

AA 36.39 34.58 36.76 44.38 42.31 46.72 56.79 55.60 58.32 80.18 78.98 82.09 83.60 82.31 90.16

Kappa 31.12 30.89 33.01 43.56 42.08 45.19 50.94 54.27 55.84 77.32 72.15 81.37 83.18 84.91 90.02

Compared with SVM, DBMF improved the recognition rate by 48% (Tables 3 and 4).
The SVM produced the worst classification (0.43), whereas DBMF produced the best result
(0.91) among the methods tested because it associated spatial and spectral neighborhood
information of the same pixel, unlike SVM, which used them independently. The OA
of CD-CNN was the worst among the methods, as 2D-CNN did not integrate spatial
and spectral information. Compared with DBMA, which extracts two types of features
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independently and employs an attention mechanism, DBMF increased the OA by 27%. The
DBMF had better classification effects by extracting multiple-scale information on MSIs
and HSIs compared with the DBDA method, which has an improved activation function
but does not prevent overfitting.

Table 4. The tree classification confusion matrix for tree species classification using ground truth
(rows) compared to the SVM model species prediction (columns; numbered labels refer to species
numbers shown in row labels).

Species Species Code 0 1 2 3 4 5 Recall (%) F-Score (%)

Birch 0 4623 7142 0 0 0 0 39.29 35.72

Larch 1 4280 35,357 0 0 0 0 89.20 70.13

Spruce 2 4334 14,268 0 0 0 0 0 0

Mongolica 3 812 2531 0 0 0 0 0 0

Willow 4 45 1003 0 0 0 0 0 0

Poplar 5 22 884 0 0 0 0 0 0

Precision 32.7501 57.78 16.66 16.66 16.66 16.66

As shown in Tables 5–8, the recognition rate of CD-CNN, DBMA, and DBDA models
was low, except for the DBMF model. In general, the classification for spruce was difficult
for the models, but the recognition rate of DBMF was higher than the other models for
spruce, which also improved the OA. The classification performance of the SVM model
was the worst, which only recognized larch and birch so that almost no other tree species
were recognized. Obviously, there were defects in high-dimensional and large batch data.
For instance, CD-CNN incorrectly classified spruce into larch, the percentage of this almost
reached 75%, while the recognition rate of spruce was zero. The recognition rate of DBMA
for willow was 0.61, which was better than CD-CNN. In addition to the equivalent effect of
spruce, the recognition ability of other tree species was slightly stronger than CD-CNN. As
shown in Tables 6 and 7, the recognition rate of DBDA for willow was 0.9, which was better
than DBMA, but it was not significantly enhanced for spruce. The classification average
accuracy of the proposed DBMF for six tree species was found to generally be better than
the other compared algorithms.

Table 5. The tree classification confusion matrix for tree species classification using ground truth
(rows) compared to the CDCNN model species prediction (columns; numbered labels refer to species
numbers shown in row labels).

Species Species Code 0 1 2 3 4 5 Recall (%) F-Score (%)

Birch 0 8036 3423 47 259 0 0 68.30 62.98

Larch 1 2972 35,991 158 515 1 0 90.8 77.67

Spruce 2 1860 11,217 5078 447 0 0 27.29 42.24

Mongolica 3 705 1030 140 1468 0 0 43.91 48.15

Willow 4 19 688 5 11 325 0 31.01 47.3

Poplar 5 159 682 11 54 0 0 0 0

Precision 58.43 67.86 93.36 53.30 99.69 16.66
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Table 6. The tree classification confusion matrix for tree species classification using ground truth
(rows) compared to the DBMA model species prediction (columns; numbered labels refer to species
numbers shown in row labels).

Species Species Code 0 1 2 3 4 5 Recall (%) F-Score (%)

Birch 0 8592 2400 420 341 0 12 73.03 69.55

Larch 1 3140 35,666 317 475 0 39 89.98 80.59

Spruce 2 632 8501 9301 149 0 19 50 64.91

Mongolica 3 562 1267 0 1511 0 3 45.19 51.70

Willow 4 0 701 14 26 307 0 29.29 45.31

Poplar 5 16 336 0 0 0 554 61.14 72.27

Precision 66.38 72.97 92.52 60.39 99.9 88.35

Table 7. The tree classification confusion matrix for tree species classification using ground truth
(rows) compared to the DBDA model species prediction (columns; numbered labels refer to species
numbers shown in row labels).

Species Species Code 0 1 2 3 4 5 Recall (%) F-Score (%)

Birch 0 10,817 710 18 219 0 1 91.94 79.25

Larch 1 3902 35,259 79 356 2 39 88.95 86.96

Spruce 2 390 4966 13,002 244 0 0 69.89 81.97

Mongolica 3 394 327 10 2612 0 0 78.13 76.22

Willow 4 0 134 10 79 825 0 78.72 88

Poplar 5 30 58 0 0 0 818 90.28 92.74

Precision 69.63 85.05 99.1 74.41 99.75 95.33

Table 8. The tree classification confusion matrix for tree species classification using ground truth
(rows) compared to the DBMF model species prediction (columns; numbered labels refer to species
numbers shown in row labels).

Species Species Code 0 1 2 3 4 5 Recall (%) F-Score (%)

Birch 0 10,991 275 109 390 0 1 93.49 83.59

Larch 1 2869 36,993 744 19 10 2 90.82 93.63

Spruce 2 482 795 17,241 19 57 8 92.67 93.37

Mongolica 3 126 131 140 2903 22 20 86.74 86.98

Willow 4 73 23 54 0 898 0 85.87 88.36

Poplar 5 1 36 44 0 0 825 91.05 93.69

Precision 75.58 96.631 94.08 87.21 91 96.49

Figure 8 illustrates the tree species classification maps with different methods on
the multi-source datasets of three areas. The quality of the DBMF classification map is
significantly higher than those of other methods and has the clearest boundaries among
them. Furthermore, DBMF readily recognizes tree species while the other methods do
not, where the OA reached 95.2%. The accuracies of DBMF for each tree species were
93.5% (birch), 90.8% (larch), 92.5% (mongolica), 86.7% (poplar), 85.9% (spruce), and 91.1%
(willow). The DBMF method consistently outperformed other methods in feature mapping,
suggesting that the fusion strategy is preferable to operations on single-source data. The
DBMA and DBDA methods can simultaneously extract spectral and spatial information,
but DBMF presents a better classification effect than both, yielding results closer to the
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reference map and providing more robust spectral and spatial features with smoother
appearances than the other methods.
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4. Discussion
4.1. Influence of Sandglass Block on DBMF

In Section 2.3.3, the sandglass block in DBMF is illustrated. Here, the effect of tree
species classification with the proposed datasets is proven. As an important parameter,
the best size of image patches for DBMF was 7, and the other conditions were the same
as Section 3.1. Next, the performances between ‘complete DBDA’ and DBDA without
sandglass block named ‘none’ are compared.

As shown in Figure 9, DBMF with sandglass block surpassed itself without the sand-
glass block. There was an almost 5% OA improvement in the datasets, and the complete
one trained faster than that without sandglass block by about 40 min. Since the sandglass
block adds shortcut connections between high-dimensional representations and performs
the depth-wise convolution in high-dimensional feature space, it can quicken counter-
propagation and cause the difference in performance [32].
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4.2. DBMF versus Other Models for the Accuracy of Tree Species Classification

The DBMF model, which applied the Bi-LSTM and triple-attention mechanism, is
designed to extract the spectral information that can not only select features through the
triple-attention mechanism, but also fully mine a host number of deep features through the
residual-dense network and realize the integration of deep features through the Bi-LSTM
memory network, effectively reducing redundant features and improving the ability of
features fusion. Similarly, the spatial information was extracted through the sandglass
block, the effect of which has been conducted in the previous section [38] (Objective 1).
As shown in Section 3, the network operation results revealed that DBMF with HJ-1A HS
and Sentinel-2 data outperformed all other methods in OA, kappa, and AA. In addition, it
performed especially well in recognizing the spruce and larch trees, which would provide
commercial value and rarity that is beneficial for the industry. The DBMF method is
followed by DBDA, DBMA, and CD-CNN, with SVM exhibiting the worst effect. In
the results where fragmentation, rough edges, low accuracy, and severe mixing occurred
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among four least species, in contrast, DBMF could recognize the six tree species perfectly. In
general, although DBMF deepened the convolution network layer, no gradient degradation
and no overfitting occurred in the training process, allowing the best classification results
to be obtained (Objective 2). Thus, this method can be used as an effective method for the
classification of complex tree species in the northeast.

4.3. Dig Deep Reason for the Results

The SVM method has a statistically significant advantage where the segmentation size
does not need to be considered when pixel-based reflectance samples are used. Ghosh and
Fassnacht [46,47] have claimed that the support vector machine method could be used to
deal with complex classification problems, such as tree species classification, wherein they
classified five tree species using SVM with Hyperion data. In the present paper, mongolica
pine, spruce, willow, and poplar were almost identified as larch. Therefore, SVM has serious
defects in the recognition ability of coniferous forest species. Hartling [48] significantly
recognized eight dominant tree species, the OA of which reached 0.82 compared to the
SVM classifiers with 0.52. The views that were obtained from the compared DL models
are basically consistent with the study conducted by Hartling, as shown in Figure 9. The
CD-CNN method exploited the local spatial–spectral relationships neighboring each pixel
vector to explore local contextual interactions, however, which hardly recognize any Poplar,
in contrast, DBMF have a good effect on the extraction of Poplar. Because CD-CNN is
based on 2D-CNN, it has certain shortcomings for complex multi-tree species classification
with samples that have small sizes. However, the 3D-CNN method is more lightweight,
general, and fast-converging, wherein the convolution operation can retain finer spectral
information and provide a good classification model structure for tree classification works
where it is difficult to obtain huge samples [17]. Therefore, this method cannot satisfy
the request in tree species classification. The DBMA method based on 3D-CNN employs
the channel-wise attention and spatial-wise mechanism to enhance features, although
the training process is more time-consuming than CD-CNN because of the parameters,
whereas DBMF fails to consider the order and relationship of the HS data. Therefore,
the two shortcomings above make DBMA more time-consuming and perform worse
compared to the DBMF method for tree classification [43]. Compared with DBMA, DBDA
adds the Mish activation function to extract the information of some negative parameters
while simultaneously increasing the complexity of the algorithm and slowing down the
efficiency in the training process. This makes the tree species map more accurate than
DBMA in classifying tasks, but at a cost of it performing worse than DBMA. Because
the proposed DBMF method can be improved in terms of training speed by employing
sandbox so that it does not lose the extraction of effective information ability and the
connection with the spatial-spectral feature, it does not pre-process or post-process data
and the spatial and spectral information of HSIs so that they can be fully utilized to achieve
the desired classification accuracy. It solves the problem of information loss caused by
feature downscaling and feature screening of the original spectral–spatial information, and
therefore DBMF can be applied in the field of forestry scientific management (Objective 3).

5. Conclusions

In this paper, a DBMF method was developed to improve the feature extraction process
for tree species classification. The proposed method effectively combines high-resolution
spatial information with spectral information. The spectral information extraction branch
employs Bi-LSTM and a triple-attention mechanism; the spatial information extraction
branch uses the sandglass module and a 3D-CNN based on the connection between BN and
the fusion activation function. The features extracted from the two branches were activated
by the fusion function to prevent overfitting. The statistical performance of the proposed
method on datasets for six dominant tree species captured by the HJ-1A and Sentinel-2
satellites was found to be better than that of other state-of-the-art methods. As such, the
proposed DBMF is suitable for forestry remote sensing application technology.
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This study demonstrates the potential of the proposed DBMF model as a powerful
classifier for complex landscapes, such as for tree species classification. In the future, we
will apply the DBMF framework to other HS datasets, develop a more efficient framework
and feature selection processes, and use a wider range of training datasets to extend the
model to the complete inventory process.
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